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Abstract. Current interest in peculiarities of elec-

tromagnetic response of nanometer scale particles of

different materials is due primarily to their practical

applications in such areas of nanotechnology as opto-

electronics, biosensors, defense, health care, communi-

cation, and biomedicine, etc. Motivated by this, in the

below cited papers, the method has been developed to

evaluate frequencies of resonance response of nanoparti-

cles of non-metallic materials for their usage as biolabels

in modern medico-biological fundamental investigations

and applied research.

Optically induced electrostriction modes in
a nanoparticle of a uniformly charged

electret

The electromagnetic response of a nanoparticle of
an ion-doped polymeric elastic insulator, commonly
called as an electret, is considered in the contin-
uum model of a uniformly charged elastic sphere [1].
The spectral formulae for the frequency of optically
induced spheroidal and torsional shear oscillations
driven by bulk force of elastic and dielectric stresses
are obtained in analytic form. Particular attention
is given to relaxation dielectric mode of the elec-
trostriction response and its stability in the lowest
quadrupole mode.

The optically-induced, by ac electromagnetic
field, electro-mechanical distortions in the volume
of uniformly charged electret are characterized by
the tensor of dielectric stresses:

pik =
1
8π

[Ei δDk + Ek δDi − (Ej δDj)δik](1)

where Ei are components of electrostatic field pro-
duced in the particle volume by extraneous charge
uniformly distributed with the charge density ρe:

∇ · E = 4π
ρe

ε
, ∇× E = 0 (2)

whose solution is well known:

E(r)= −∇Φ(r), Φ(r)= −2π

3ε
ρe(r2−3 R2), (3)

[Er =
4π

3
ρe

ε
r, Eθ = 0, Eφ = 0].

The electro-mechanical effect is described by con-
stituting equation1

δDi = −4πρe ui (4)

showing that optically induced fluctuations of di-
electric induction δDi are linearly proportional to
material displacements ui and inextricably related
to the storage of extraneous charge uniformly dis-
persed with density ρe over the sample volume;
note, the dielectric materials can accommodate only
extraneous charge.

We confine our analysis to the Rayleigh’s
regime of optical perturbation resulting in non-
compressional fluctuations of the electret mate-
rial (the charge density remains unchanged δρe =
−ρe ∇k uk = 0) which are described by nodeless
field of material displacements ui obeying the vector
Laplace equation, ∇2u = 0.

The eigenfrequency can be computed with help
of the energy variational method whose key point is
the separable representation of fluctuating material
displacements and strains in the following separable
form

u(r, t) = a(r)α(t), uik(r, t) = aik(r)α(t), (5)

aik =
1
2
[∇i ak + ∇k ai]

Then, for the perturbation-induced dielectric induc-
tion one has

δDi(r, t) = −4πρe ai(r)α(t) (6)

and the tensor of dielectric stress is given by

pik(r, t) = [τik(r) − 1
2
τjjδik]α(t), (7)

τik(r) = −ρe[Ei(r) ak(r) + Ek(r) ai(r)].

From the energy balance equation

∂

∂t

∫
ρu̇2

2
dV = −

∫
σiku̇ik dV , σik = 2 µ uik (8)

1The constitutive equation for δDi is compatible with the
Maxwell equation ∇ × δH = (4π/c)δj + (1/c)δḊ. Applying
to this latter equation operator of divergence and taking into
account that δj = ρeδv and the continuity equation of the
charge conservation δρ̇e = −∇ δj, we obtain δḊ = −4πρeδv.
Bearing in mind that δv = u̇ and eliminating in the last
equation the time derivative one arrives at (4).
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where ρ stands for the density the shear modulus µ,
we obtain

α̈(t) + ω2α(t) = 0, ω2 =
Kd

M
(9)

M =
∫

ρai aidV , Kd =
∫

τik(r)aik(r)dV .

The fact that such response is accompanied by in-
ternal shear deformations suggests that dielectric
modes in question can be specified in a manner of
vibrational modes in an elastic sphere, that is, as
spheroidal and torsional ones.

Dielectric spheroidal mode. In this positive par-
ity mode the displacements are described by the
poloidal (polar) vector field

as = N�∇×∇× r r� P�(cos θ). (10)

For the frequency ωds of spheroidal dielectric mode
we obtain

ω2
ds(�) = −2

3
ω2

d (� − 1), ω2
d =

4π

ε

ρ2
e

ρ
(11)

where ωd is the natural unit of dielectric fluctua-
tions.

Dielectric toroidal mode. The material displace-
ments in negative parity torsional mode are de-
scribed by the axial toroidal (axial) vector field

at = N�∇× r r� P�(cos θ). (12)

Computation of the the frequency ωdt of torsional
dielectric mode yields

ω2
dt(�) = −1

3
ω2

d (� − 1), ω2
d =

4π

ε

ρ2
e

ρ
. (13)

The obtained spectral equations represent one of
the main newly obtained result of the presented the-
ory showing that optical response of nanoparticle of
electret are characterized by two different in par-
ity modes, even-parity spheroidal dielectric mode
and odd-parity torsion one. The basic dielectric fre-
quency ωd depends upon the dielectric constant ε
in such a way that in the limit ε → ∞, as is the
case of conductors, ωd → 0. This means that, con-
trary to the surface plasmons in a nanoparticle of
a highly conducting noble metals, the electrostatic
fluctuations in a nanoparticle of a uniformly charged
electret are manifested as relaxation modes, not os-
cillatory.

As a representative example let us consider a case
of nanoparticle with shear modulus profile given by

µ(r) = µ
[
1 −

( r

R

)]
(14)

In this case the frequency of spheroidal electrostric-
tion mode can be conveniently represented in the
following form

ω2
s = ω2

e 2(2� + 1)(� − 1)�−1

[
1 − �

3(2� + 1)
β

]
,

and for the torsional electrostriction mode as follows

ω2
t = ω2

e

(2� + 3)(� − 1)
2(� + 1)

[
1 − 2(� + 1)

3(2� + 3)
β

]
,

with β = ω2
d/ω2

e . One sees that the lowest over-
tone of both spheroidal and torsional modes is of
quadrupole degree � = 2. The absence of monopole
� = 0, breathing overtone, is the consequence of
adapted approximation of incompressible matter.
The dipole fields of both poloidal and toroidal dis-
placements describe center-of-mass translation and
rigid-body rotation, respectively, that is, the non-
vibrational reaction of nanoparticle.
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Figure 1: Ratio of the squared frequency of spheroidal
(upper panel) and torsional (down panel) electrostric-
tion modes to the squared frequency of elastic shear os-
cillations as a function of multipole degree at indicated
values of parameter of stability β

In Fig.1 we plot the ratio ω2
s/ω2

e and ω2
t /ω2

e as
functions of the multipole degree of spheroidal and
torsional vibrations �, respectively, showing that
the larger the � the higher is the frequency. Also,
this figure exhibits strong dependence of frequencies
upon the parameter

β =
ω2

d

ω2
e

=
3
4π

(εµ)−1 Q2

R4
, Q=ρeV , V=(4π/3)R3.

carrying information about total charge Q accumu-
lated by particle of radius R and shows that the
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larger β (the large the ratio Q/R2) the lower is the
frequency. The most conspicuous feature of elec-
trostriction response in question is that the low-
est, quadrupole, overtones become unstable when
the parameter β attains critical value β = βc.
Specifically, the spheroidal electrostriction vibra-
tional mode becomes unstable, meaning ωs(� =
2) = 0, when[

1 − �

3(2� + 1)
β

]
�=2

= 0 → βs
c =

15
2

. (15)

The lowest quadrupole torsional electrostriction vi-
brational mode unstable, ωs(� = 2) = 0, when[

1 − 2(� + 1)
3(2� + 3)

β

]
�=2

= 0 → βt
c =

7
2
. (16)
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Figure 2: The frequency of quadrupole spheroidal and
torsional electrostriction modes as a function of the sta-
bility parameter β. The circles on 0X-axis mark values
of β at which the electrostriction mode becomes unsta-
ble undergoing transition from regime of oscillations to
the relaxation regime.

In Fig.2 we plot the ratio of squared frequencies of
quadrupole, � = 2, overtones of both spheroidal and
torsion electrostriction modes as functions of the
stability parameter β by highlighting the above crit-
ical values of stability parameter βc by circles on the
0X-axis. In this points the electrostriction modes
undergo transition from the oscillatory regime to
the relaxation regime. This leads us to conclude
that nanoparticle of uniformly charged electret is
stable to optically induced deformation oscillations
when

Q

R2
< C(

√
εµ) (17)

where constant C falls in the range 5 < C < 10; un-
derstandably that the lowest βc should be regarded
as genuine critical value of this parameter. The
practical usefulness of the above established con-
ditions of instability is that it imposes severe con-
strain on the size and total charge accommodated

by the electret nanoparticles and this must be taken
into account in the process for technological fabri-
cation. As a representative example, for the nano
and micro dimensions 10−8 < R < 10−6 m whose
total charge is of the order of Q ≈ 102e ≈ 10−16

(in SI units) from polymers with dielectric constant
1 < ε < 15, and shear modulus 106 < µ < 109 (in SI
units), from above obtaned condition it follows that
10−4 < Q/R2 < 1. So that for ultra fine particles
of nano sizes this condition is always fulfilled.

The obtained criteria of electro-elastic instability
of the electret nano-particle is crucialt to practical
utilization of uniformly charged polymeric ultra fine
particles which are currently fabricated by jammed
technologies to be used as biolabels.

Elastic Shell-against-Core Nodeless
Vibrations of a Spherical Nanoparticle

The optically induced oscillatory response of
a spherical two-component, shell-core structured,
nanoparticle by nodeless elastic vibrations of soft
peripheral shell against hard and dynamically im-
mobile inner core has been considered [2]. Fo-
cus was laid on Rayleigh’s regime of electromag-
netic resonance in which particle material can be
regarded in approximation of incompressible con-
tinuous medium.

Using the energy variational method, the follow-
ing spectral equations for the frequencies of the
even-parity spheroidal and odd-parity torsional vi-
brational modes, acoustic phonons, trapped in the
finite-depth shell have been obtained:

ω2
s(�, λ) = ω2

0

2(2� + 1)
(1 − λ2�+1)

× (18)
[
(�2 − 1)(1 − λ2�−1) + �(� + 2)λ2�−1(1 − λ2�+3)

(� + 1) + �λ2λ+1

]
,

ω2
0 =

c2
t

R2
=

µ

ρ
λ =

Rc

R
= 1 − h h =

∆R

R
.

where ct = [µ/ρ]1/2 is the speed of transverse wave
of elastic shear in the bulk of the shell material, R
– radius of nanoparticle, Rc – radius of the inner
static core, � – multipole degree of acoustic phonon.
Note, that geometrical parameter λ strongly less
than unit, λ < 1. Deserved for particular comment
is the dipole overtone of these oscillations which
possesses properties of Goldstone’s soft mode. To
see this, consider the limit of zero-size radius of the
core, λ = (Rc/R) → 0, which corresponds global
nodeless spheroidal elastic shear vibrations in en-
tire spherical volume of particle. In this limit we
arrive at known result:

ω2
s((� ≥ 2, λ = 0) = ω2

0 [2(2� + 1)(� − 1)] (19)
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Figure 3: Fractional frequencies of dipole, � = 1,
spheroidal ωs/ω0 and torsional ωt/ω0 oscillations of sur-
face shell against hard core as functions of its fractional
thickness h = (R − Rc)/R. When h → 1, the radius
of core Rc → 0. The smooth decreasing of frequency
shows the more mass (volume) of nanoparticles sets in
dipole vibrations of shell against core the less frequency
of these vibrations.

which shows that lowest overtone of global, in en-
tire volume, of nodeless spheroidal oscillations is of
quadrupole degree, � = 2. However, this is not the
case when we are oscillations trapped in the periph-
eral layer of finite depth. In this latter case from
equation (18) it follows that lowest overtone is of
dipole degree and the frequency of this dipole vi-
bration is given by

ω2
s(� = 1, λ) = ω2

0

9λ(1 − λ5)
(1 − λ3)(1 + λ3/2)

. (20)

Thus, in case of global oscillations, in the whole
volume, the dipole overtone of spheroidal mode dis-
appears what is means that the frequency of dipole
overtone tends to zero, as λ → 0.

The resultant expression for the frequency of tor-
sional oscillations of the soft layer against hard core
is given by

ω2(�, λ) = ω2
0 (2� + 3)(2� − 1)(1 − λ2�+1) × (21)[

1 − � − λ2�+1[(� + 2) + X ]
(2� − 1) − λ2�+1X

]
,

X = (2� − 1)(2� + 3) − (2� + 1)2λ2 + (2� + 3)λ2�+1,

ω2
0 =

c2
t

R2
=

µ

ρ
λ =

Rc

R
= 1 − h h =

∆R

R
.

In the limit of zero-size radius of the core, λ =
(Rc/R) → 0, corresponding to torsional oscillations
in the entire volume of homogeneous elastic particle
we regain the known result:

ω2
t (� ≥ 2, λ = 0) = ω2

0 [(2� + 3)(� − 1)]. (22)

One sees that in this limit the lowest overtone is
again of quadrupole degree � = 2. In the mean
time, when the torsional vibrations are locked in the
surface layer, the lowest overtone is of dipole degree
and the frequency of � = 1 torsional vibration is
given by

ω2
t (� = 1, λ) = ω2

0

15λ3(1 − λ3)
(1 − λ)3(1 + 3λ + 6λ2 + 5λ3)

.

(23)
In Fig.3 we plot fractional frequencies of dipole both
spheroidal ωs(� = 1)/ω0 and torsional ωt(� = 1)/ω0

oscillations as functions of h = ∆R/R, the frac-
tional thickness of the peripheral shell, which is the
measure of amount of mass that sets in vibrations.

The obtained spectral equations clearly show how
the frequencies of optically induced elastic reso-
nances depend upon particle material – the shear
modulus µ, the density ρ – and on geometrical sizes
of two-component nanoparticles – depth of dynam-
ical peripheral shell ∆R and the particle radius R.
Such information is indispensable to identification
of experimentally observed picks of resonant pho-
toabsorbtion by ultrafine micro and nanoparticles
with eigenmodes of optically induced elastic oscilla-
tions.

References

[1] S.I.Bastrukov, I.V. Molodtsova, P.-Y. Lai: Optically
induced electrostriction modes in a nanoparticle of a
uniformly charged electret. International Journal of
Nanoscience, Vol. 7 (2008), p. 291-298.

[2] S.I. Bastrukov, P.-Y. Lai, I.V. Molodtsova, H.-
K. Chang, D.V. Podgainy: Surface response of
spherical core-shell structured nanoparticle by opti-
cally induced elastic oscillations of soft shell against
hard core, Surface Review and Letters, Vol. 16
(2009), p.5-10.

138


